Math 8H Lesson 7 Prime Factorizations

1. Prime the Prime Factorization of each number below. Then indicate whether if it is a perfect square or perfect cube, neither, or both:

perfect cube, neither, or both:		
24	800	864
1800	648	210
1800	040	210
50.40	2126	2744
5040	3136	2744
$N = 2^2 \times 50 \times 5$	$N = 64 \times 25 \times 49$	$N = 30 \times 45 \times 40$

2. Given each pair of numbers in their prime factorization, find the GCF and LCM

2. Orven each pair of numbers in their prime factoriz	ation, find the Ger and Berri
25 & 45	$N_1 = 2^2 \times 3^3 \& N_2 = 2^3 \times 5^2$
$N_2 = 2^3 \times 5 \times 7 \& N_2 = 2 \times 3^4 \times 5^2$	$N_1 = 2^3 \times 4 \times 6 \& N_2 = 10^2 \times 8$

$N_1 = a^2 b^{13} c^{15} & \&$	$N_2 = a^5 b^8 c^{11} d^5$

$$N_1 = 2^7 \& N_2 = 3^5$$

3. Use the prime factorization to find the number of factors:

3. Use the prime factorization to find the	
$2^4 \times 3^2 \times 5^2 =$	$3^4 \times 5^3 \times 11^8 =$
20124	4500
2 4	- II
$2^3 \times 3^4 \times 36 =$	$3^5 \times 7^{11} \times 21$
$N = 8^2 \times 3^4 \times 15^2$	$N = 12^3 \times 20^3$
$N = 8 \times 3 \times 13$	$N = 12 \times 20$
	•

- 4. How do you tell if a number is a perfect square or cube by looking at the prime factorization:
- 5. Find the lowest value of N such that the square root will become a positive integer:

a)
$$\sqrt{2^3 5^1 7^2 N}$$

b)
$$\sqrt{4^27^25^2N}$$

c)
$$\sqrt{3^4 5^3 12N}$$

<u>d</u>)	$\sqrt{38412N}$

e) $\sqrt{13992N}$

f) $\sqrt{664(N-1)}$

6. Find the lowest value of N such that the integer will have the indicated the indicated number of factors:

a)
$$2^33^N$$
 (8 factors)

b) $(8) \times 27N$ (48 factors)

c) $2^3 3^4 N^2$ (56 factors)

7. Two positive integers have a GCF of $2 \times 3 \times 5$ and a LCM of $2^3 \times 3^4 \times 5 \times 7$. If one of the numbers is 210, find the other number.

8.	Find the smallest number N , such that $2^33^4N^2$ has 56 factors.
9.	Two numbers are "relatively prime" if they do not share any common factors other than 1. How many positive integers less than or equal to 40 are relatively prime to 40?
10	. Challenge: Suppose there are 1000 lockers and 1000 people. The first person opens all the lockers; the
10	second person closes every second locker; the third person changes the state of every third locker [ie: if
	it's open, he closes it or if it's closed, he opens it]. This process continues, where the nth person changes
	the state of every nth locker. After all 1000 people have gone through, how many lockers are open?